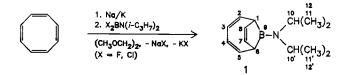
Kurzmitteilung / Short Communication

489

9-Diisopropylamino-9-borabicyclo[4.2.1]nona-2,4,7-triene from the Reaction of Cyclooctatetraene with Sodium-Potassium Alloy and Dihalogeno(diisopropylamino)boranes

Walter Maringgele, Dietmar Stalke, Andreas Heine, Anton Meller*, and George M. Sheldrick

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen


Received November 7, 1989

Key Words: 1,3,5,7-Cyclooctatetraene / 9-Borabicyclo[4.2.1]nona-2,4,7-triene, 9-(diisopropylamino)- / Borane, dihalogeno(diisopropylamino)-

The reaction of 1,3,5,7-cyclooctatetraene with sodium-potassium alloy and dihalogeno(diisopropylamino)boranes in 1,2dimethoxyethane gives the title compound, characterized by

Recently, we have reported on reactions of aromatic compounds with subvalent boron species^{1, 2)}. The formation of compounds $C_6H_6 \cdot x$ BN(*i*- C_3H_7)₂ (x = 1-6) from the reaction of dichloro(diisopropylamino)borane with sodium-potassium alloy in 1,2-dimethoxyethane has been detected by mass-spectrometric studies. Among these, 1,4-bis(diisopropylamino)-1,3a,4,6a-tetrahydroborolo[3,2-b]borole and 2,8,9-tris(diisopropylamino)-2,8,9-triborabicyclo[3.3.1]nona-3,6-diene have been isolated. By varying the reaction conditions, 1,4,6-tris(diisopropylamino)-1,4,6-triboraspiro[4,4]nona-2,8diene has also been obtained³⁾. In the case of naphthalene two formal borene units are added to the same ring to yield a 1,5dihydro-1,5-epiboranobenzo[c]borepine derivative¹⁾. Acenaphthylene adds one "diisopropylaminoborene" unit to give 2,3-dihydro-1H-naphtho[1,8-cd]borine².

We report here on the synthesis of 9-diisopropylamino-9-borabicyclo[4.2.1]nona-2,4,7-triene (1) involving treatment of 1,3,5,7-cyclooctatetraene with sodium-potassium alloy in 1,2-dimethoxyethane and subsequent addition of dichloro- or difluoro(diisopropylamino)borane to the 10π -aromatic dianion.

Boron species formed upon dehalogenation of dihalogeno(diisopropylamino)boranes — however they might be formulated — apparently react in a somewhat different way as compared with carbenes^{1, 2)}. It is known, that cyclooctatetraene reacts with carbenes by 1,2 addition to give the bicyclo[6.1.0]nona-2,4,6-triene system^{4, 9)}. In contrast, subvalent boron species undergo 1,4 addition leading to the bicyclo[4.2.1]nona-2,4,7-triene system. There is some evidence from ¹³C-NMR spectra of the isomer fraction (see Experimental) that one of the isomers formed is the boracyclononatetraene with sp² carbon atoms bonded to boron. 1 is quite stable towards hydrolysis in boiling water. However, it is hydrolyzed by boiling aqueous KOH (30%, 12 h) to give a mixture of cyclooctatriene isomers. elemental analysis, MS (EI, FI), NMR (¹H, ¹¹B, ¹³C), and X-ray crystallography.

Crystal Structure of 1

The molecular structure of 1 is depicted in Figure 1. Atomic coordinates and equivalent isotropic displacement parameters are given in Table 1, selected bond lengths and angles in Table 2.

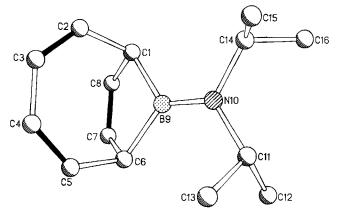


Figure 1. Molecular structure of 1

Table 1. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (× 10³) [Å²]; equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor

	x	у	z	U(eq)
N(10)	2590(4)	1066(1)	8137(3)	40(1)
B(9)	1655(7)	1428(2)	6884(5)	43(1)
C(1)	1591(6)	2085(1)	6996(4)	45(1)
c(2)	-423(7)	2266(2)	7327(5)	54(2)
C(3)	-2396(6)	2051(1)	6708(4)	46(1)
c(4)	-3038(6)	1607(1)	5627(4)	42(1)
C(5)	-1932(7)	1275(1)	4947(5)	54(2)
C(6)	367(6)	1305(1)	5029(4)	46(1)
C(7)	859(5)	1822(1)	4282(4)	38(1)
C(8)	1487(5)	2231(1)	5304(4)	42(1)
c(11)	2712(5)	467(1)	7938(4)	39(1)
C(12)	4008(7)	315(1)	6768(5)	57(2)
C(13)	546(6)	201(2)	7516(5)	60(2)
C(14)	3678(5)	1268(1)	9757(4)	39(1)
C(15)	6050(6)	1165(1)	10171(5)	51(1)
C(16)	2677(7)	1058(2)	11033(5)	61(2)

Table 2. Selected bond lengths [Å] and angles [°]

N(10)-B(9)	1,408	(5)	B(9)-C(1)	1.615	(5)
B(9)-C(6)	1.631	(5)	C(1)-C(2)	1.482	(6)
C(1)-C(8)	1.487	(5)	C(2)-C(3)	1.363	(5)
C(3)-C(4)	1.423	(5)	C(4)-C(5)	1.322	(6)
C(5)-C(6)	1.482	(6)	C(6)-C(7)	1.492	(5)
C(7)-C(8)	1.328	(5)			
B(9)-N(10)-C	(11)	124.0(3)	B(9)-N(10)-	C(14)	121.4(3)
N(10)-B(9)-C	(1)	126.5(3)	N(10)-B(9)-	C(6)	130.4(3)
C(1)-B(9)-C((6)	103.1(3)	B(9)-C(1)-C	(2)	110.4(3)
B(9)-C(1)-C((8)	100.2(3)	C(2)-C(1)-C	(8)	107.5(3)
C(1)-C(2)-C((3)	126.9(3)	C(2)-C(3)-C	(4)	129.7(4)
C(3)-C(4)-C((5)	131.4(3)	C(4)-C(5)-C	(6)	127.5(3)
B(9)-C(6)-C((5)	108.2(3)	B(9)-C(6)-C	(7)	98.9(3)
C(5)-C(6)-C((7)	110.5(3)	C(6)-C(7)-C	(8)	114.6(3)
C(1)-C(8)-C((7)	113.5(3)			

The molecule obtained by the reaction described above contains one five-membered ring and one seven-membered ring. Both rings contain the atoms C1, B9, and C6 and are formed by bridging of the BN(iPr)₂ unit to the former eight-membered ring. Three remaining double bonds could be located in the molecule.

Thanks arc due to the Volkswagenstiftung and the Fonds der Chemischen Industrie for financial support.

Experimental

Elemental analyses: Mikroanalytisches Laboratorium Beller. Göttingen. – NMR $[^{1}H, ^{13}C (TMS int.), ^{11}B (Et_2O - BF_3 ext.]: Bru$ ker AM 250. - MS (EI, 70 eV; FI): Varian MAT CH5. - $Cl_2BN(iPr)_2^{6}$, $F_2BN(iPr)_2^{7, 8}$. – All reactions are performed in a dry atmosphere of N₂ and in dry solvents.

9-(Diisopropylamino)-9-borabicyclo[4.2.1]nona-2,4,7-triene (1): 30 ml (0.26 mol) of 1,3,5,7-cyclooctatetraene is added slowly to 0.53 mol of sodium-potassium alloy (4.1 g Na, 14 g K) in 500 ml of 1,2-dimethoxyethane. The formation of the dianion proceeds moderately exothermically. After stirring for 12 h, 0.26 mol of dichloro- or difluoro(diisopropylamino)borane (48.2 g or 38.7 g) are slowly added, and the mixture is heated at reflux for 5 h. The slurry is then filtered through a glass frit, 1,2-dimethoxyethane is removed under reduced pressure, and the residue distilled. About half of the fraction, collected at 72°C/0.001 mbar, solidified to give crystals of 1 which are filtered off. The viscous filtrate appears to be a mixture of isomers of 1 as indicated by FI-MS, showing only [M⁺] at m/z = 215, and NMR which proves the existence of at least two isomers which could not be separated so far. After recrystallization from 1,2-dimethoxyethane, the yield of 1 is 18 g (31%) or 17 g (30%) for the reaction with dichloro- or difluoro(diisopropylamino)borane. - MS (EI): m/z (%) = 215 (40) [M⁺]; (FI): m/z (%) = 215 (100). - NMR (CDCl₃): $\delta^{11}B = 47.4 (h_{1/2} = 190 \text{ Hz}); \delta^{1}H = 2.33$ (dd, ${}^{3}J_{1,2} = {}^{3}J_{6,5} = 9.1$ Hz, ${}^{3}J_{1,8} = {}^{3}J_{6,7} = 1.8$ Hz, 1-, 6-H), 5.55 (d, ${}^{3}J_{7,1} = {}^{3}J_{8,6} = 1.8$ Hz, 7-, 8-H), 5.97 (AA'MM'XX', ${}^{3}J_{2,1} = {}^{3}J_{5,6} =$ 9.1 Hz, ${}^{3}J_{2,3} = {}^{3}J_{5,4} = 11.2$ Hz, ${}^{4}J_{2,4} = {}^{4}J_{5,3} = 0.6$ Hz, ${}^{5}J_{2,5} = {}^{5}J_{5,2} = 0.7$ Hz, 2-, 5-H), 5.63 (AA'XX', ${}^{3}J_{3,4} = {}^{3}J_{4,3} = 7.5$ Hz, ${}^{3}J_{3,2} = {}^{3}J_{4,5} = 0.5$

11.2 Hz, ${}^{4}J_{3,5} = {}^{4}J_{4,2} = 0.6$ Hz, 3-, 4-H), 3.60 (sept, ${}^{3}J_{10,11/12} =$ ${}^{3}J_{10',11'/12'} = 6.9$ Hz, 10-, 10'-H), 1.15 (d, ${}^{3}J_{12,10} = {}^{3}J_{12',10'} = 6.9$ Hz, 12-, 12'-H), 1.14 (d, ${}^{3}J_{11,10} = {}^{3}J_{11',10'} = 6.9$ Hz, 11-, 11'-H); $\delta^{13}C =$ 35.66 (br. C-1, -6), 127.56 (s, C-7, -8), 135.21 (s, C-2, -5), 124.02 (s, C-3, 4), 48.24 (s, C-10, -10'), 23.26 (s, C-11, 11'), 24.29 (s, C-12, -12'). C14H22BN (215.14) Calcd. C 78.16 H 10.31 B 5.02 N 6.51

Found C 78.09 H 10.40 B 5.20 N 6.60

Crystal Data for $C_{14}H_{22}BN(1)^{9}$: A crystal (0.8 \times 0.3 \times 0.7 mm) was mounted on a Stoe-Siemes four-circle diffractometer. - Monoclinic, space group P2(1)/n with a = 6.513(1), b = 24.503(4), c =8.632(1) Å, $\beta = 105.06(1)^{\circ}$, V = 1330.3 Å³, M = 215.1, Z = 4, $D_{\text{calcd.}} = 1.074 \text{ g/cm}^3, \mu = 0.06 \text{ mm}^{-1}, F(000) = 472. - \text{Data were}$ collected at -85° C using Mo- K_{α} radiation ($\overline{\lambda} = 0.7107$ Å) in the 2Θ range of $8-45^\circ$. Intensities of 2066 reflections were measured of which 1710 were independent and 1454 considered as observed with $F > 3\sigma(F)$. They were used in the refinement. Absorption corrections were not applied. The structure was solved by direct methods (SHELXS-8610). All non-hydrogen atoms were refined anisotropically. A riding model with idealized geometry was employed for H atom refinement, and the hydrogen thermal parameters were refined isotropically with those of atoms bonded to the same carbon atom constrained to be equivalent. 145 parameters were refined, and a weighting scheme ($w^{-1} = \sigma^2 F_o + 0.0005 \cdot F_o^2$) was used. The final values for R and R_w were 0.074 and 0.083, respectively, with the final Fourier difference map showing a maximum of 0.54 and a minimum of -0.24 e Å⁻³. The relatively high R values and residual electron densities indicate a slight disorder of the molecule involving a pseudo mirror plane in the mean plane of the sevenmembered ring.

CAS Registry Numbers

1: 124686-64-2 / $Cl_2BN(i-C_3H_7)_2$: 44873-49-6 / $F_2BN(i-C_3H_7)_2$: 38751-90-5 / 1,3,5,7-cyclooctatetraene: 629-20-9

- ¹⁾ A. Meller, D. Bromm, W. Maringgele, D. Böhler, G. Elter, J. Organomet. Chem. 347 (1988) 11.
- ²⁾ A. Meller, W. Maringgele, G. Elter, D. Bromm, M. Noltemeyer,
- G. M. Sheldrick, Chem. Ber. 120 (1987) 1437. ³⁾ A. Meller, D. Bromm, W. Maringgele, A. Heine, D. Stalke, G. M. Sheldrick, J. Chem. Soc., Chem. Commun., paper submitted.
- ⁴⁾ P. Fischer, G. Schaefer, Angew. Chem. 93 (1981) 895; Angew. Chem. Int. Ed. Engl. 20 (1981) 863.
- ⁵⁾ T. J. Katz, P. J. Garratt, J. Am. Chem. Soc. 86 (1964) 4876.
- ⁶⁾ K. Niedenzu, H. Beyer, J. W. Dawson, H. Jenne, Chem. Ber. 96 (1963) 2653.
- ⁷⁾ W. Becker, W. Beck, H. Nöth, B. Wrackmeyer, Chem. Ber. 105 (1972) 2883.
- ⁸⁾ H.-J. Külps, Diplomarbeit, Universität Göttingen, 1973.
- ⁹⁾ Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, on quoting the depository number CSD-54324, the names of the authors, and the journal citation.
- ¹⁰⁾ G. M. Sheldrick, SHELXS-86, Göttingen 1986.

[366/89]